IQ半砖转换器系列是全新一代在板安装、固定开关频率的DC-DC转换器，应用同步整流技术获得了极高的功率转换效率。模块全部为密封封装，可在多种工业和交通应用的恶劣条件下提供保护。

工作特性
- 高效率，额定负载电流效率94%
- 工作输入电压范围：18-36V
- 固定开关频率提供可预测的EMI
- 无最小负载要求
- 可选项：并联应用有源均流

机械特性
- 工业标准封装半砖引脚输出
- 尺寸：2.386” x 2.486” x 0.512”
 (60.60 x 63.14 x 13.00 mm)
- 总重量：4.9 oz (139 g)
- 法兰盘基板可选

控制特性
- 开关控制，参考输入端
- 输出电压远端补偿
- 宽输出电压调节范围：-50%, +10%

安全特性
- UL 60950-1:2003, basic insulation
- CAN/CSA-C22.2 No. 60950-1:2003
- EN60950-1:2001 Certified by TUV
- RoHS compliant (见最后一页)

目录
- 产品系列电气特征 2
- 5V输出电气特征及图表 4
- 12V输出电气特征及图表 6
- 15V输出电气特征及图表 8
- 24V输出电气特征及图表 10
- 28V输出电气特征及图表 12
- 40V输出电气特征及图表 14
- 50V输出电气特征及图表 16
- 应用部分 18
- 标准封装机械图 20
- 法兰盘封装机械图 21
- 标准认证测试，订购信息 22
Y-IQ24 产品系列电气特征（全部输出电压）

除非另有说明，否则Ta = 25°C，气流速率= 300 LFM；Vin = 24Vdc；全工作温度范围为-40°C至+100°C基板温度，并具有适当的功率降额。部分参数的更改不再另行通知。

### 参数	Min.	Typ.	Max.	Units	备注及条件
最大工作极限参数
输入电压 | 18 | 24 | 36 | V | 未说明。
非工作时 | -1 | 50 | V | 连续
工作时 | 40 | V | 连续
工作时瞬态保护 | 50 | V | 1 s
隔离电压 [加强绝缘, IEC 60950-1] | 2250 | Vrms | 60 s per EN 50155
输入到输出 | 2250 | Vrms | 60 s per EN 50155
输入到基板 | 2250 | Vrms | 60 s per EN 50155
输出到基板 | 2250 | Vrms | 60 s per EN 50155
工作温度 | -40 | 100 | °C | 基板温度
存储温度 | -45 | 125 | °C |
输入特征
工作输入电压范围 | 18 | 24 | 36 | V |
推荐的外部输入电容 | 470 | µF | Typical ESR 0.1-0.2 Ω； |
动态特征
开启瞬态
开启时间 | 24 | 35 | 40 | ms | 满载, Vout=90% nom.
启动禁止时间 | 500 | ms |
输出电压过冲 | 5 | % | 最大输出电容 |
隔离特征
隔离电压（加强绝缘） | 见最大工作极限参数 |
隔离电阻 | 30 | MΩ | 在500 Vdc测试, per EN 50155 |
隔离电容（输入到输出） | 1000 | pF |
功率降额曲线温度限制
半导体结温 | 125 | °C | 壳温额定 150 °C |
变压器温度 | 125 | °C | UL 额定最大工作温度 130 °C |
最大基板温度 Tb | 100 | °C |
功能特征
开关频率 | 230 | 240 | 250 | kHz | 隔离级开关频率相同
可靠性特征
计算的 MTBF (MIL-217) MIL-HDBK-217F | 1.44 | 10^6 Hrs. | Tb = 70°C |
现场展示的 MTBF | 1.2 | 10^6 Hrs. | Tb = 70°C |
注1: 可以在模块外部增加更高值的隔离电容。
通用图 1: 典型启动波形，输入电压提前接入，通道 2 为 ON/OFF
引脚电压。

通用图 2: 输出电压相对负载电流显示典型限流曲线和转换器关断
点。

通用图 3: 5V 到 15V 输出电压上调阻值曲线

通用图 4: 24V 到 50V 输出电压上调阻值曲线

通用图 5: 所有输出电压下调阻值曲线
Y-IQ24050HZx60 电气特征 (5.0 Vout)
除非另有说明，否则Ta = 25°C，气流速率= 300 LFM，Vin = 24Vdc；全工作温度范围为-40°C至+100°C基板温度，并具有适当的功率降额。部分参数的更改不再另行通知。

<table>
<thead>
<tr>
<th>参数</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>备注及条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大输入电流</td>
<td>20 A</td>
<td></td>
<td></td>
<td>Vin min; 调节; 限流</td>
<td></td>
</tr>
<tr>
<td>空载输入电流</td>
<td>290 mA</td>
<td>350 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>静态输入电流</td>
<td>3 mA</td>
<td>5 mA</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入瞬态响应</td>
<td>0.95 V</td>
<td></td>
<td></td>
<td>见图6</td>
<td></td>
</tr>
<tr>
<td>输入端纹波电流</td>
<td>500 mA</td>
<td></td>
<td></td>
<td>RMS</td>
<td></td>
</tr>
<tr>
<td>推荐的输入保险丝</td>
<td>40 A</td>
<td></td>
<td></td>
<td>推荐使用快熔保险丝，见注2</td>
<td></td>
</tr>
<tr>
<td>输出特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压设置点</td>
<td>4.918 V</td>
<td>5.000 V</td>
<td>5.070 V</td>
<td></td>
<td>全样品、全输入、全负载、全温度范围及全生命周期</td>
</tr>
<tr>
<td>输出电压调整</td>
<td>±0.25%</td>
<td></td>
<td></td>
<td></td>
<td>带宽20 MHz；见注1</td>
</tr>
<tr>
<td>输出DC限流保护动作点</td>
<td>66.0 A</td>
<td>72.0 A</td>
<td>78.0 A</td>
<td></td>
<td>取决于热降额</td>
</tr>
<tr>
<td>输出DC限流保护关断电压</td>
<td>2 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出反灌保护电流关断点</td>
<td>6 A</td>
<td></td>
<td></td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>反灌保护恢复电流</td>
<td>3 mA</td>
<td>4 mA</td>
<td></td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>输出电压纹波和噪音</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>峰峰值</td>
<td>135 mV</td>
<td></td>
<td></td>
<td>满载</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>32 mV</td>
<td></td>
<td></td>
<td>满载</td>
<td></td>
</tr>
<tr>
<td>工作输出电流范围</td>
<td>0 A</td>
<td>60 A</td>
<td></td>
<td>取决于热降额</td>
<td></td>
</tr>
<tr>
<td>输出DC限流保护动作点</td>
<td>66.0 A</td>
<td>72.0 A</td>
<td>78.0 A</td>
<td></td>
<td>输出电压低10%</td>
</tr>
<tr>
<td>输出DC限流保护关断电压</td>
<td>2 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出反灌保护电流关断点</td>
<td>6 A</td>
<td></td>
<td></td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>反灌保护恢复电流</td>
<td>3 mA</td>
<td>4 mA</td>
<td></td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>最大输出电容</td>
<td>20,000 µF</td>
<td></td>
<td></td>
<td>负载中所称Yout (电阻负载)</td>
<td></td>
</tr>
<tr>
<td>电压变化值 (0.1 A/µs)</td>
<td>150 mV</td>
<td></td>
<td>50% to 75% to 50% Iout max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>恢复时间</td>
<td>500 µs</td>
<td></td>
<td>To within 1% Vout nom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压调节范围</td>
<td>-50 %</td>
<td>10 %</td>
<td></td>
<td>通过引脚8 & 4; 通用图3-5</td>
<td></td>
</tr>
<tr>
<td>输出电压远端补偿范围</td>
<td>10 %</td>
<td></td>
<td>通过引脚8 & 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出过压保护</td>
<td>5.9 V</td>
<td>6.2 V</td>
<td>6.4 V</td>
<td>超过全温度范围</td>
<td></td>
</tr>
</tbody>
</table>

注1: 输出端滤波电容为1 µF陶瓷电容和15 µF低ESR钽电容。对于要求降低输出电压纹波和噪声的应用，请咨询YOTTA。
注2: 安全认证要求使用额定值等于或低于该值的保险丝。
图1: 在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的效率

图2: 在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的功率消耗

图3: 全密封转换器热降额（无散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图4: 全密封转换器热降额（1/2"散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图5: 输出电压响应负载电流阶跃变化（50%-75%-50% of $I_{out(max)}$; $dI/dt = 0.2 A/\mu s$）。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1: Vout，通道2: Iout

图6: 输出电压响应输入电压阶跃变化（250V/mS），在最大负载电流时。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1: Vout，通道2: Vin。
Electrical Characteristics (12.0 Vout)

除非另有说明，否则Ta = 25°C，气流速率= 300 LFM，Vin = 24Vdc；全工作温度范围为-40℃至+100℃基板温度，并具有适当的功率降额。部分参数的更改不再另行通知。

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Note and Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum Input Current</td>
<td>33</td>
<td>A</td>
<td>Vin min; regulated; limited</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quiescent Input Current</td>
<td>3</td>
<td>5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Input Offset</td>
<td>2</td>
<td>V</td>
<td></td>
<td></td>
<td>See Fig 6</td>
</tr>
<tr>
<td>Input Ripple Current</td>
<td>500</td>
<td>mA</td>
<td>RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Recommended Input Fuse</td>
<td>40</td>
<td>A</td>
<td></td>
<td></td>
<td>Recommended use of fast-acting fuse, see Note 2</td>
</tr>
<tr>
<td>Output Characteristics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Setting Point</td>
<td>11.80</td>
<td>12.00</td>
<td>12.17</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Output Voltage Regulation</td>
<td>±0.25</td>
<td>%</td>
<td></td>
<td></td>
<td>Full input range ±0.25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Full load range ±0.25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Full temperature range -300 mV to 300 mV</td>
</tr>
<tr>
<td>Total Output Voltage Range</td>
<td>11.64</td>
<td>12.36</td>
<td>V</td>
<td></td>
<td>Full samples, full load, full load range, full temperature range, full life cycle</td>
</tr>
<tr>
<td>Output Voltage Ripple and Noise</td>
<td>100</td>
<td>mV</td>
<td>RMS</td>
<td></td>
<td>Spectral bandwidth 20 MHz; see Note 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Peak-to-peak</td>
</tr>
<tr>
<td>Work Output Voltage</td>
<td>0</td>
<td>42</td>
<td>A</td>
<td></td>
<td>Regulated for thermal overload</td>
</tr>
<tr>
<td>Output DC Overcurrent Protection Point</td>
<td>46.2</td>
<td>50.4</td>
<td>54.6</td>
<td>A</td>
<td>Output voltage below 10%</td>
</tr>
<tr>
<td>Output DC Overcurrent Protection Voltage</td>
<td>5</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Short Circuit Protection Voltage</td>
<td>6</td>
<td>A</td>
<td></td>
<td></td>
<td>From output to ground</td>
</tr>
<tr>
<td>Reverse Protection Recovery Current</td>
<td>3</td>
<td>4</td>
<td>mA</td>
<td></td>
<td>From output to ground</td>
</tr>
<tr>
<td>Maximum Output Current</td>
<td>12,000</td>
<td>μF</td>
<td></td>
<td></td>
<td>Full load labeled Vout (resistive load)</td>
</tr>
<tr>
<td>Voltage Change (0.1 A/μs)</td>
<td>300</td>
<td>mV</td>
<td></td>
<td>To within 1% Vout nom</td>
<td></td>
</tr>
<tr>
<td>Recovery Time</td>
<td>500</td>
<td>μs</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Output Voltage Regulator</td>
<td>-50</td>
<td>%</td>
<td></td>
<td></td>
<td>Through pin 8 & 4; see generic Fig 3-5</td>
</tr>
<tr>
<td>Output Voltage Maximum</td>
<td>10</td>
<td>%</td>
<td></td>
<td></td>
<td>Through pin 8 & 4</td>
</tr>
<tr>
<td>Output Overvoltage Protection</td>
<td>14.2</td>
<td>14.8</td>
<td>15.4</td>
<td>V</td>
<td>Beyond full temperature range</td>
</tr>
<tr>
<td>Efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100% Load</td>
<td>94</td>
<td>%</td>
<td></td>
<td></td>
<td>Efficiency curve see Fig 1</td>
</tr>
<tr>
<td>50% Load</td>
<td>95</td>
<td>%</td>
<td></td>
<td></td>
<td>Efficiency curve see Fig 1</td>
</tr>
</tbody>
</table>

注1: 输出端滤波电容为 1 μF 陶瓷电容和 15 μF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用，请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。
Y-OQ24xxxHZXxx 规格书

技术图表

图1: 在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的效率

图2: 在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的功率消耗

图4: 全密封转换器热降额（无散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图5: 输出电压响应负载电流阶跃变化（50%-75%-50% of Iout(max); dI / dt = 0.2 A / μs）。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1: Vout，通道2: Iout

图6: 输出电压响应输入电压阶跃变化（250V/mS），在最大负载电流时。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1: Vout，通道2: Vin

输入电压：18-36V
输出电压：12V
电 流：42A
型 号：Y-OQ24120HZx42
Y-IQ24150HZx34 电气特征 (15.0 Vout)

除非另有说明，否则 Ta = 25°C，气流速率 = 300 LFM，Vin = 24Vdc；全工作温度范围为 -40°C 至 +100°C 基板温度，并具有适当的功率降额。部分参数的更改不再另行通知。

<table>
<thead>
<tr>
<th>参数</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>备注及条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大输入电流</td>
<td>34</td>
<td>A</td>
<td>Vin min; 调节; 限流</td>
<td></td>
<td></td>
</tr>
<tr>
<td>空载输入电流</td>
<td>340</td>
<td>400</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>静态输入电流</td>
<td>3</td>
<td>5</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入瞬态响应</td>
<td>2.5</td>
<td>20</td>
<td>μs</td>
<td>轴测图6</td>
<td></td>
</tr>
<tr>
<td>输入端纹波电流</td>
<td>500</td>
<td>mA</td>
<td>RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>推荐的输入保险丝</td>
<td>40</td>
<td>A</td>
<td>推荐使用快熔保险丝，见注2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压设置点</td>
<td>14.75</td>
<td>15.00</td>
<td>15.21</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>输出电压调整</td>
<td>±0.25</td>
<td>%</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压纹波和噪音</td>
<td>100</td>
<td>mV</td>
<td>RMS</td>
<td>满载</td>
<td></td>
</tr>
<tr>
<td>工作输出电流范围</td>
<td>0</td>
<td>34</td>
<td>A</td>
<td>取决于热降额</td>
<td></td>
</tr>
<tr>
<td>输出DC限流保护动作点</td>
<td>37.4</td>
<td>40.8</td>
<td>44.2</td>
<td>A</td>
<td>输出电压低 10%</td>
</tr>
<tr>
<td>输出DC限流保护断点</td>
<td>6</td>
<td>V</td>
<td></td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>反馈保护恢复电流</td>
<td>3</td>
<td>4</td>
<td>mA</td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>最大输出电容</td>
<td>10,000</td>
<td>μF</td>
<td></td>
<td>满载标称Vout（电阻负载）</td>
<td></td>
</tr>
<tr>
<td>负载电流瞬态时输出电压</td>
<td>500</td>
<td>mV</td>
<td></td>
<td>50% to 75% to 50% Jout max</td>
<td></td>
</tr>
<tr>
<td>电压变化值 (0.1 A/μs)</td>
<td>250</td>
<td>μs</td>
<td></td>
<td>To within 1% Vout nom</td>
<td></td>
</tr>
<tr>
<td>输出电压调节范围</td>
<td>-50</td>
<td>10</td>
<td>%</td>
<td>通过引脚 8 & 4；通用图 3-5</td>
<td></td>
</tr>
<tr>
<td>输出电压远端补偿范围</td>
<td>10</td>
<td>%</td>
<td>通过引脚 8 & 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出过压保护</td>
<td>17.7</td>
<td>18.5</td>
<td>19.2</td>
<td>V</td>
<td>超过全温度范围</td>
</tr>
<tr>
<td>效率</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>100%负载</td>
<td>94</td>
<td>%</td>
<td>效率曲线见图1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50%负载</td>
<td>95</td>
<td>%</td>
<td>效率曲线见图1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注1: 输出端滤波电容为 1 µF 陶瓷电容和 15 µF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用，请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。
技术图表

图1: 在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的效率

图2: 在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的功率消耗

图3: 全密封转换器热降额 (无散热器) 最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器 (标称输入电压)

图4: 全密封转换器热降额 (1/2散热器) 最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器 (标称输入电压)

图5: 输出电压响应负载电流阶梯变化 (50%~75%~50% of Iout(max))，负载电容: 1µF 陶瓷电容和 15µF 钽电容。通道1: Vout, 通道2: Iout

图6: 输出电压响应输入电压阶梯变化 (250V/ms)，在最大负载电流时。负载电容: 1µF 陶瓷电容和 15µF 钽电容。通道1: Vout, 通道2: Vin。
Y-IQ24240HZx21 电气特征 (24.0 Vout)

除非另有说明，否则 Ta = 25°C，气流速率为 300 LFM，Vin = 24Vdc；全工作温度范围为 -40°C 至 +100°C 基板温度，并具有适当的功率降额。部分参数的更改不再另行通知。

参数	Min.	Typ.	Max.	Units	备注及条件
输入特征
最大输入电流 | 33 A | Vin min; 调节; 限流
空载输入电流 | 300 mA | | | | 100 x
静态输入电流 | 3 mA | | | | 100 x
输入瞬态响应 | 3 V | 见图6
输入端纹波电流 | 500 mA RMS | | | | 100 x
推荐的输入保险丝 | 40 A | | | | 推荐使用快熔保险丝，见注2
输出特征
输出电压设置点 | 23.60 V | 24.00 V | 24.34 V | | 100 x
输出电压调整 | ±0.25 % | ±0.25 % | | | 100 x
全温度范围 | | 600 mV | | | 100 x
总输出电压范围 | 23.28 V | 24.72 V | | 全样品、全输入、全负载、全温度范围及全生命周期
输出电压纹波和噪声 | | | 450 mV peak-to-peak; | | 100 x
峰峰值 | | | 150 mV RMS | | 100 x
RMS | | | | | 100 x
工作输出电流范围 | 0 A | 21 A | | 取决于热降额
输出DC限流保护动作点 | 23.1 A | 25.2 A | 27.3 A | | 100 x
输出DC限流断开电压 | 9.6 V | | | | 100 x
输出反灌保护电流闭断点 | 3 mA | | | | 100 x
反灌保护恢复电流 | 3 mA | 4 mA | | 从输出中获得负电流
最大输出电容 | 6,000 µF | | | 满载标称Vout（电阻负载）
负载电阻瞬态时输出电压 | | | | | 100 x
电压变化值 (0.1 A/µs) | 950 mV | 500 µs | | 50% to 75% to 50% Iout max
恢复时间 | | | | | To within 1% Vout nom
输出电压调节范围 | -50 % | 10 % | | 通过引脚 8 & 4; 通用图 3-5
输出电压远端补偿范围 | -50 % | 10 % | | 通过引脚 8 & 4
输出过压保护 | 28.3 V | 29.5 V | 30.7 V | 超过全温度范围
效率
100%负载 | 94 % | | | 效率曲线见图1;
50%负载 | 95 % | | | 效率曲线见图1；

注1：输出端滤波电容为 1 µF 陶瓷电容和 15 µF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用，请咨询YOTTA。
注2：安全认证要求使用额定值等于或低于该值的保险丝。
图1: 在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的效率

图2: 在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的功率消耗

图3: 全密封转换器热降额（无散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图4: 全密封转换器热降额（1/2"散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图5: 输出电压响应负载电流阶跃变化（50%-75%-50% of Iout(max); dI / dt = 0.2 A / μs）。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1: Vout，通道2: Iout

图6: 输出电压响应输入电压阶跃变化（250V/mS），在最大负载电流时。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1: Vout，通道2: Vin。
Y-IQ24280HZx18 电气特征 (18.0 Vout)
除非另有说明,否则Ta = 25°C, 气流速率= 300 LFM, Vin = 24Vdc; 全工作温度范围为-40°C至+100°C基板温度, 并具有适当的功率降额。部分参数的更改不再另行通知。

<table>
<thead>
<tr>
<th>参数</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>备注及条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大输入电流</td>
<td>37</td>
<td>A</td>
<td>Vin min; 调节; 限流</td>
<td></td>
<td></td>
</tr>
<tr>
<td>空载输入电流</td>
<td>300</td>
<td>380</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>静态输入电流</td>
<td>100</td>
<td>160</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入瞬态响应</td>
<td>2.5</td>
<td></td>
<td>V</td>
<td>见图6</td>
<td></td>
</tr>
<tr>
<td>输入端纹波电流</td>
<td>500</td>
<td></td>
<td>mA</td>
<td>RMS</td>
<td></td>
</tr>
<tr>
<td>推荐的输入保险丝</td>
<td>40</td>
<td>A</td>
<td></td>
<td>推荐使用快熔保险丝, 见注2</td>
<td></td>
</tr>
<tr>
<td>输出特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压设置点</td>
<td>27.54</td>
<td>28.00</td>
<td>28.39</td>
<td>V</td>
<td>全样品、全输入、全负载、全温度范围及全生命周期</td>
</tr>
<tr>
<td>输出电压纹波和噪音</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>带宽20 MHz; 见注1</td>
</tr>
<tr>
<td>RMS</td>
<td>40</td>
<td>80</td>
<td>mV</td>
<td>满载</td>
<td></td>
</tr>
<tr>
<td>工作输出电流范围</td>
<td>0</td>
<td>18</td>
<td>A</td>
<td>取决于热降额</td>
<td></td>
</tr>
<tr>
<td>输出DC限流保护动作点</td>
<td>19.5</td>
<td>21.0</td>
<td>22.5</td>
<td>A</td>
<td>输出电压低10%</td>
</tr>
<tr>
<td>输出DC限流关断电压</td>
<td>11.2</td>
<td></td>
<td>V</td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>输出反灌保护电流动作点</td>
<td>4</td>
<td>3</td>
<td>6</td>
<td>mA</td>
<td>从输出中获得负电流</td>
</tr>
<tr>
<td>反灌保护恢复电流</td>
<td>0</td>
<td>3</td>
<td>4</td>
<td>mA</td>
<td>从输出中获得负电流</td>
</tr>
<tr>
<td>最大输出电容</td>
<td>5,000</td>
<td>µF</td>
<td></td>
<td>满载标称Vout (电阻负载)</td>
<td></td>
</tr>
<tr>
<td>负载电容瞬态时输出电压</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>电压变化值 (0.1 A/µs)</td>
</tr>
<tr>
<td></td>
<td>1.5</td>
<td></td>
<td>V</td>
<td>50% to 75% to 50% Iout max</td>
<td></td>
</tr>
<tr>
<td>恢复时间</td>
<td>8</td>
<td></td>
<td>ms</td>
<td>To within 1% Vout nom</td>
<td></td>
</tr>
<tr>
<td>输出电压调节范围</td>
<td>-50</td>
<td>10</td>
<td>%</td>
<td>通过引脚 8 & 4; 通用图 3-5</td>
<td></td>
</tr>
<tr>
<td>输出电压远端补偿范围</td>
<td>10</td>
<td></td>
<td>%</td>
<td>通过引脚 8 & 4</td>
<td></td>
</tr>
<tr>
<td>输出过压保护</td>
<td>35.0</td>
<td>36.4</td>
<td>37.8</td>
<td>V</td>
<td>超过全温度范围</td>
</tr>
<tr>
<td>效率</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>100% 负载</td>
</tr>
<tr>
<td></td>
<td></td>
<td>93</td>
<td>%</td>
<td>效率曲线图1</td>
<td></td>
</tr>
<tr>
<td>50% 负载</td>
<td>95</td>
<td></td>
<td>%</td>
<td>效率曲线图1</td>
<td></td>
</tr>
</tbody>
</table>

注1: 输出端滤波电容为 1 µF 陶瓷电容和 15 µF 低ESR钽电容。对于要求降低输出电压纹波和噪声的应用，请咨询YOTTA。
注2: 安全认证要求使用额定值等于或低于该值的保险丝。
图1：在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的效率

图2：在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的功率消耗

图3：全密封转换器热降额（无散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图4：全密封转换器热降额（1/2”散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图5：输出电压响应负载电流阶跃变化（50%-75%-50% of Iout(max); dI / dt = 0.2 A / μs）。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1：Vout，通道2：Iout

图6：输出电压响应输入电压阶跃变化（250V/mS），在最大负载电流时。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1：Vout，通道2：Vin。
Y-IQ24400HZx13 电气特征 (40.0 Vout)

除非另有说明，否则 Ta = 25°C，气流速率为 300 LFM，Vin = 24Vdc；全工作温度范围为-40°C至+100°C基板温度，并具有适当的功率降额。部分参数的更改不再另行通知。

<table>
<thead>
<tr>
<th>参数</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>备注及条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大输入电流</td>
<td></td>
<td>33 A</td>
<td></td>
<td>Vin min; 调节; 限流</td>
<td></td>
</tr>
<tr>
<td>空载输入电流</td>
<td></td>
<td>280 mA</td>
<td>350 mA</td>
<td>5 mA</td>
<td></td>
</tr>
<tr>
<td>静态输入电流</td>
<td></td>
<td>3 mA</td>
<td>5 mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入瞬态响应</td>
<td></td>
<td>3.5 V</td>
<td></td>
<td>见注6</td>
<td></td>
</tr>
<tr>
<td>输入端纹波电流</td>
<td></td>
<td>400 mA</td>
<td></td>
<td>RMS</td>
<td></td>
</tr>
<tr>
<td>推荐的输入保险丝</td>
<td></td>
<td>40 A</td>
<td></td>
<td>推荐使用快熔保险丝，见注2</td>
<td></td>
</tr>
<tr>
<td>输出特征</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压设置点</td>
<td>39.34 V</td>
<td>40.00 V</td>
<td>40.56 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压调整</td>
<td>±0.25 %</td>
<td>±0.25 %</td>
<td>±0.25 %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>总输出电压范围</td>
<td>-1000 mV</td>
<td>1000 mV</td>
<td></td>
<td></td>
<td>全样品、全输入、全负载、全温度范围及全生命周期</td>
</tr>
<tr>
<td>输出电压纹波和噪音</td>
<td></td>
<td></td>
<td></td>
<td>带宽 20 MHz；见注1</td>
<td></td>
</tr>
<tr>
<td>RMS</td>
<td>100 mV</td>
<td></td>
<td></td>
<td>满载</td>
<td></td>
</tr>
<tr>
<td>工作输出电流范围</td>
<td>0 A</td>
<td>12.5 A</td>
<td>15.0 A</td>
<td>16.3 A</td>
<td>取决于热降额</td>
</tr>
<tr>
<td>输出DC限流保护动作点</td>
<td>13.8 A</td>
<td>15.0 A</td>
<td>16.3 A</td>
<td></td>
<td>输出电压低 10%</td>
</tr>
<tr>
<td>输出DC限流关断电压</td>
<td>16 V</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出反灌保护电流关断点</td>
<td>3 mA</td>
<td></td>
<td></td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>反灌保护恢复电流</td>
<td>3 mA</td>
<td>4 mA</td>
<td></td>
<td>从输出中获得负电流</td>
<td></td>
</tr>
<tr>
<td>最大输出电容</td>
<td>1,500 µF</td>
<td></td>
<td></td>
<td>满载标称Vout (电阻负载)</td>
<td></td>
</tr>
<tr>
<td>负载电容瞬态时输出电压</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>电压变化值 (0.1 A/µs)</td>
<td>2.2 V</td>
<td></td>
<td></td>
<td>50% to 75% to 50% Iout max</td>
<td></td>
</tr>
<tr>
<td>恢复时间</td>
<td>500 µs</td>
<td></td>
<td></td>
<td>To within 1% Vout nom</td>
<td></td>
</tr>
<tr>
<td>输出电压调节范围</td>
<td>-50 V</td>
<td></td>
<td></td>
<td>通过引脚 8 & 4；通用图 3-5</td>
<td></td>
</tr>
<tr>
<td>输出电压远端补偿范围</td>
<td>10 %</td>
<td></td>
<td></td>
<td>通过引脚 8 & 4</td>
<td></td>
</tr>
<tr>
<td>输出过压保护</td>
<td>47.2 V</td>
<td>49.2 V</td>
<td>51.2 V</td>
<td></td>
<td>超过全温度范围</td>
</tr>
<tr>
<td>效率</td>
<td>100%负载</td>
<td>93 %</td>
<td></td>
<td>效率曲线见图1</td>
<td></td>
</tr>
<tr>
<td>50%负载</td>
<td>95 %</td>
<td></td>
<td>效率曲线见图1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

注1: 输出端滤波电容为 1 µF 陶瓷电容和 15 µF 低ESR钽电容。对于要求降低输出电压纹波和噪音的应用，请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。
Y-IQ24xxxHZXxx 规格书

输入电压：18-36V
输出电压：40V
电 流：13A
型 号：Y-IQ24400HZx13

技术图表

图1：在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的效率

图2：在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的功率消耗

图3：全密封转换器热降额（无散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图4：全密封转换器热降额（1/2"散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图5：输出电压响应负载电流阶跃变化（50%-75%-50% of Iout(max), dI / dt = 0.2 A / μs）。负载电容：1μF 陶瓷电容和 15μF 钽电容。通道1: Vout, 通道2: Iout

图6：输出电压响应输入电压阶跃变化（250V/mS），在最大负载电流时。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1: Vout，通道2: Vin。
Y-IQ24500HZx10 电气特征 (50.0 Vout)

除非另有说明，否则Ta = 25°C，气流速率为 300 LFM，Vin = 24Vdc；全工作温度范围为 -40°C 至 +100°C 基板温度，并具有适当的功率降额。部分参数的更改不再另行通知。

<table>
<thead>
<tr>
<th>参数</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>备注及条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>输入特性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>最大输入电流</td>
<td>33</td>
<td>A</td>
<td>Vin min; 调节; 限流</td>
<td></td>
<td></td>
</tr>
<tr>
<td>空载输入电流</td>
<td>300</td>
<td>380</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>静态输入电流</td>
<td>100</td>
<td>160</td>
<td>mA</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入瞬态响应</td>
<td>4</td>
<td>V</td>
<td>见图6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输入端纹波电流</td>
<td>500</td>
<td>mA</td>
<td>RMS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>推荐的输入保险丝</td>
<td>40</td>
<td>A</td>
<td>推荐使用快熔保险丝，见注2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出特性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压设置点</td>
<td>49.18</td>
<td>50.00</td>
<td>50.70</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>输出电压调整</td>
<td>全输入范围</td>
<td>±0.25</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>全负载范围</td>
<td>±0.25</td>
<td>%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>全温度范围</td>
<td>-1250</td>
<td>1250</td>
<td>mV</td>
<td></td>
</tr>
<tr>
<td>总输出电压范围</td>
<td>48.50</td>
<td>51.50</td>
<td>V</td>
<td>全样品、全输入、全负载、全温度范围及全生命周期</td>
<td></td>
</tr>
<tr>
<td>输出电压纹波和噪音</td>
<td>峰峰值</td>
<td>250</td>
<td>500</td>
<td>mV</td>
<td>满载</td>
</tr>
<tr>
<td></td>
<td>RMS</td>
<td>60</td>
<td>120</td>
<td>mV</td>
<td>满载</td>
</tr>
<tr>
<td>工作输出电流范围</td>
<td>0</td>
<td>10</td>
<td>A</td>
<td>取决于热降额</td>
<td></td>
</tr>
<tr>
<td>输出DC限流保护动作点</td>
<td>11.0</td>
<td>12.0</td>
<td>13.0</td>
<td>A</td>
<td>输出电压低 10%</td>
</tr>
<tr>
<td>输出DC限流开关电压</td>
<td>20</td>
<td>V</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>反灌保护检测点</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>A</td>
<td>从输出中获得负电流</td>
</tr>
<tr>
<td>反灌保护恢复电流</td>
<td>0</td>
<td>3</td>
<td>7</td>
<td>mA</td>
<td>从输出中获得负电流</td>
</tr>
<tr>
<td>最大输出电容</td>
<td>1,000</td>
<td>µF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>负载电感瞬态时输出电压</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>电压变化值 (0.1 A/µs)</td>
<td>2</td>
<td>V</td>
<td>50% to 75% to 50% Iout max</td>
<td></td>
<td></td>
</tr>
<tr>
<td>恢复时间</td>
<td>8</td>
<td>ms</td>
<td>To within 1% Vout nom</td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出电压调节范围</td>
<td>-50</td>
<td>10</td>
<td>%</td>
<td>通过引脚 8 & 4；通用图 3-5</td>
<td></td>
</tr>
<tr>
<td>输出电压远端补偿范围</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>输出过压保护</td>
<td>56.5</td>
<td>59.0</td>
<td>61.5</td>
<td>V</td>
<td>超过全温度范围</td>
</tr>
</tbody>
</table>

效率

| | 100%负载 | 94 | % | 效率曲线图1 |
| | 50%负载 | 95 | % | 效率曲线图1 |

注1: 输出滤波电容为 1 µF 陶瓷电容和 15 µF 低ESR钽电容。对于要求降低输出电压纹波和噪音的应用，请咨询YOTTA。

注2: 安全认证要求使用额定值等于或低于该值的保险丝。
图1：在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的效率

图2：在25°C，最小、标称、最大输入电压时，标称输出电压相对负载电流的功率消耗

图3：全密封转换器热降额（无散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图4：全密封转换器热降额（1/2”散热器）最大输出电流降额相对气流速率为100 LFM至400 LFM的环境空气温度。空气从输入到输出穿过转换器（标称输入电压）

图5：输出电压响应负载电流阶跃变化（50%、75%、50% of Iout(max); dI / dt = 0.2 A / μs）。负载电容：1μF 陶瓷电容和 15μF 钽电容。通道1：Vout，通道2：Iout

图6：输出电压响应输入电压阶跃变化（250V/mS），在最大负载电流时。负载电容：1μF 陶瓷电容和15μF 钽电容。通道1：Vout，通道2：Vin。
基本功能介绍

此模块采用两级拓扑架构，第一级保持模块在全输入范围、全负载和全温度范围内稳定输出，第二级为隔离变换提供输入到输出的隔离，以实现高效率 DC/DC 转换，两级固定开关频率方便 EMI 处理。关于模块的基本性能及控制功能如下

- **ON/OFF 使能**: 通过模块的 ON/OFF 引脚（Pin2）可以控制模块的使能和关断，此管脚，参考原边输入地 Vin-，有正逻辑和负逻辑两种模式可选。负逻辑时低电平有效，即 ON/OFF 下拉至 Vin- 时模块使能输出，正逻辑时高电平有效，即 ON/OFF 上拉至一个高电压可以使模块输出。

- **远端电压调节 Remote Sense+/-**: 用于补偿模块输出侧到负载端的线路压降，采用此功能时将 Sense+（Pin8）和 Sense-（Pin6）分别在负载端与供电电源的正负端连接，最高补偿电压不应超过额定输出的 10%，以免触发过压保护。如不用远端补偿功能需将这两个管脚在模块输出侧分别与 Vout+ 和 Vout- 就近连接，悬空对模块输出调整率有一定影响。

- **输出电压调整 Trim (Pin 7)**: 通过 Trim 管脚可以在典型输出电压的基础上对输出电压进行调整，需注意调整电压范围不能超过数据表中规定的最大值。如需下调输出电压应在 Trim（Pin 7）和 Sense-（Pin 6）之间增加一个电阻，该电阻阻值计算公式如下：

 \[R_{trim-down} = \left(\frac{511}{\Delta \%} \right) -10.22 \text{ [kΩ]} \]

 其中

 \[\Delta = \left| \frac{V_{nominal} - V_{desired}}{V_{nominal}} \right| \times 100\% \]

 如需上调输出电压，则应在 Trim（Pin 7）和 Sense+（Pin 8）之间增加一个电阻，电阻阻值计算公式如下：

 \[R_{trim-up} = \left(\frac{5.11 \times V_{out} \times (100+\Delta \%)}{1.225 \Delta \%} \right) -\frac{511}{\Delta \%} -10.22 \text{ [kΩ]} \]

 其中：\(\Delta \) 同上

注：通过 Trim 调整输出电压不会影响模块对输出过压保护点，输出电压上调过压容易触发输出过压保护。另外不必在 Trim 和 Sense +/- 管脚之间加外部电容，模块内部已做抗干扰处理。

保护功能

- **输入欠压保护**: 当输入电压过低（见数据表欠压保护门限）时，此模块会关断输出。只有在输入电压上升至数据表中给出的启动门限值及以上时模块才重新恢复正常输出。

- **输出过流保护**: 当输出电流超过模块输出电流限值时模块会降低输出电压以保持继续供电能力，但当输出电压下降至数据表中给出的启动电流关断电压阈值及以下时，模块会关断输出。在持续过流（或短路）状况下模块会以 2Hz 的频率进入“打嗝”模式不断尝试重启，直至过流（或短路）状况去掉后会自动恢复正常输出。

- **输出反灌电流保护**: 当输出端有一个超出“输出反灌电流限值”的负电流出现时，模块会调整增加输出电压以便能继维持正电流供电，当输出电压调整超过模块输出过压保护点时模块会关闭输出。

- **输出过压保护**: 当模块输出电压超过模块输出过压保护门限值时（见数据表），模块会立即关闭输出以便有效的保护模块避免过压损坏。输出关闭 500ms 后模块会自动重启。

- **过温保护**: 模块内部有温度传感器监测 PCB 平均温度，当内部温度超过设定的过温保护点时会立即关闭输出，当温度降低一定值时（见数据表过温保护延迟温度值）模块会重新启动恢复正常输出。
并联应用

此模块提供“F”全功能版本，内置主动均流电路，通过分别连接不同模块的 SHARE (+) 和 SHARE (-) 可以实现并联均流功能。

- 理论上支持多达 100 个模块并联均流，并联应用时其中一个模块会被选为主模块以控制其他模块，主模块的选取是动态的，因此并联时需要注意对称布局做好阻抗匹配；
- 并联模块的输入管脚和输出管脚要分别连接在一起，特别注意输入要共用 EMI 滤波器，因为 Share+/ - 信号参考原边 Vin-；
- 并联各模块的 SHARE+/ - 分别连接在一起，推荐采用差分走线；
- 各并联模块的 ON/OFF 管脚需要并联在一起同时控制以保证启动同步；
- Sense+ 和 Sense- 要么就近分别与模块的 Vout+ 和 Vout- 连接在一起，要么在负载侧分别与正负端连接在一起补偿压降，如果输出端有共模电感，走线要在电感之前；
- 如果需要采用 Trim 功能，每个模块应采用同一阻值和精度的电阻分别进行调整；
- 并联模块在启动时会选取一个模块作为主模块，其他从模块会自动同步主模块的开关频率 / 占空比调整输出电压尽量保持一致，以便获得较高精度的均流度。当主模块由于某种异常关断时整个并联系统都会关断输出，异常消失后系统会重新启动并选取新的主模块，当其中的从模块因某种异常关断时，其他模块可以继续正常工作，不会导致整个并联系统关断；
- 当输出电压较高时可能会引起震荡，因此在输出电压高于 18V 时在输出端推荐增加 470nH（典型值）的电感和 10μF（最小值）的电容预防输出震荡；

并联典型典型应用电路如下：

图 E：并联典型应用电路。如果输入增加共模电感，所有并联模块的 Vin- 需要在共模电感之后连接在一起。如果输出电压大于 18V，输出需要增加 470nH 电感和至少 10μF 的电容。
注：
1) 每个螺钉的施加扭矩不应超过6in-lb (0.7 Nm) 推荐值为3in-lb
2) 表面的基板平整度公差为0.01英寸 (0.25mm) TIR
3) 引脚 1-4, 6-8, 和 B 直径为 0.040英寸 (1.02毫米) 支座肩部直径为0.080英寸 (2.03毫米)
4) 引脚 5 和 9 直径为 0.080英寸 (2.03 毫米) 支座肩部直径为0.125英寸 (3.18毫米)
5) 所有引脚：材料-铜合金 表面处理 (RoHS 6/6) -镀镍锡
6) 未标尺寸的器件仅为视觉展示
7) 重量: 4.9 oz (139 g)
8) 螺纹安装或通孔安装可选
9) 除非另有标注，所有尺寸都为英寸 (毫米) 公差: x.xx +/-0.02 in. (x.x +/-0.5mm)
 x.xxx +/-0.010 in. (x.xx +/-0.25mm)
10) 工艺：满足或超过 IPC-A-610C Class II

引脚分配

<table>
<thead>
<tr>
<th>引脚</th>
<th>名称</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vin(+).</td>
<td>正输入电压</td>
</tr>
<tr>
<td>2</td>
<td>ON/OFF</td>
<td>TTL 输入来打开及关断转换器, 参考 Vin(–) 带内部拉升</td>
</tr>
<tr>
<td>3</td>
<td>SHARE(+)</td>
<td>有源均流分配对（见注 4）</td>
</tr>
<tr>
<td>4</td>
<td>SHARE(–)</td>
<td>有源均流分配对（见注 4）</td>
</tr>
<tr>
<td>5</td>
<td>Vin(–)</td>
<td>负输入电压</td>
</tr>
<tr>
<td>6</td>
<td>Vout(–)</td>
<td>负输出电压</td>
</tr>
<tr>
<td>7</td>
<td>SENSE(–)</td>
<td>负远端补偿（见注 1）</td>
</tr>
<tr>
<td>8</td>
<td>SENSE(+)</td>
<td>输出电压调节（见注 2）</td>
</tr>
<tr>
<td>9</td>
<td>Vout(+)</td>
<td>正输出电压</td>
</tr>
</tbody>
</table>

注：
1) SENSE(–) 应该在负载端或模块引脚处就近连接至 Vout(–)
2) 保持 TRIM 引脚开路以获得标称输出电压
3) SENSE(+) 应该在负载端或模块引脚处就近连接至 Vout(+)
4) 仅限于全功能选项。标准型号中未填充引脚 3 和引脚 B
法兰盘封装机械图

注:
1) 每个螺钉的施加扭矩不应超过6in-lb (0.7 Nm)推
 2) 表面的基板平整度公差为0.01英寸（0.25mm）TIR
 3) 引脚1-4, 6-8, 和 B 直径为 0.040英寸 (1.02毫米)
 4) 引脚5 和 9 直径为 0.080英寸 (2.03 毫米)
 5) 所有引脚：材料-铜合金
 6) 未标尺寸的器件仅为视觉展示
 7) 重量: 4.8 oz (137 g)
 8) 除非另有标注，所有尺寸都为英寸（毫米）
 公差：x.xx +/-0.02 in. (x.xx +/- 0.5mm)
 x.xxx +/-0.010 in. (x.xx +/- 0.25mm)
 9) 工艺：满足或超过IPC-A-610C Class II

引脚分配

<table>
<thead>
<tr>
<th>引脚</th>
<th>名称</th>
<th>功能</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vin(+)</td>
<td>正输入电压</td>
</tr>
</tbody>
</table>
| 2 | ON/OFF | TTL 输入来打开及关断转换器，
 | 参考 Vin(–) 带内部拉升 |
| 8 | SHARE(+) | 有源均流差分配对 （见注 4） |
| 3 | SHARE(–) | 截止输出电压 |
| 4 | Vin(–) | 负输入电压 |
| 5 | Vout(–) | 负输出电压 |
| 6 | SENSE(–) | 负远端补偿 （见注 1） |
| 7 | TRIM | 输出电压调节 （见注 2） |
| 8 | SENSE(+) | 正远端补偿 （见注 3） |
| 9 | Vout(+) | 正输出电压 |

注:
1) SENSE(–) 应该在负载端或模块引脚处就近连接至 Vout(–)
2) 保持 TRIM 引脚开路以获得标称输出电压
3) SENSE(+) 应该在负载端或模块引脚处就近连接至 Vout(+)
4) 仅用于全功能选项。标准型号中未填充引脚 3 和引脚 B
YOTTA DC DC转换器产品命名系统遵循以下格式

Y-IQ24050HZw60xyz

模型命名系统

YOTTA DC DC转换器产品命名系统遵循以下格式

Y-IQ 24 050 H Z C 60 N R S - G

热设计
功率等级
封装尺寸
输出电压
产品系列

输入电压
输出电压
最大输出电流

Y-IQ24050HZw60xyz 18-36V 5.0 V 60A
Y-IQ24120HZw42xyz 18-36V 12 V 42A
Y-IQ24150HZw34xyz 18-36V 15 V 34A
Y-IQ24240HZw21xyz 18-36V 24 V 21A
Y-IQ24280HZw18xyz 18-36V 28 V 18A
Y-IQ24400HZw13xyz 18-36V 40 V 12.5A
Y-IQ24500HZw10xyz 18-36V 50 V 10A

订购信息

下表显示了此产品系列中转换器的有效型号及订购选项。 订购时，请确保使用完整的产品型号。

在型号中添加“-G”以符合6/6 ROHS要求。

在上面列出的型号中，必须包括以下选项来代替wxyz空格。 并非所有组合都提供有效型号，请与YOTTA联系确认。

<table>
<thead>
<tr>
<th>型号</th>
<th>输入电压</th>
<th>输出电压</th>
<th>最大输出电流</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y-IQ24050HZw60xyz</td>
<td>18-36V</td>
<td>5.0 V</td>
<td>60A</td>
</tr>
<tr>
<td>Y-IQ24120HZw42xyz</td>
<td>18-36V</td>
<td>12 V</td>
<td>42A</td>
</tr>
<tr>
<td>Y-IQ24150HZw34xyz</td>
<td>18-36V</td>
<td>15 V</td>
<td>34A</td>
</tr>
<tr>
<td>Y-IQ24240HZw21xyz</td>
<td>18-36V</td>
<td>24 V</td>
<td>21A</td>
</tr>
<tr>
<td>Y-IQ24280HZw18xyz</td>
<td>18-36V</td>
<td>28 V</td>
<td>18A</td>
</tr>
<tr>
<td>Y-IQ24400HZw13xyz</td>
<td>18-36V</td>
<td>40 V</td>
<td>12.5A</td>
</tr>
<tr>
<td>Y-IQ24500HZw10xyz</td>
<td>18-36V</td>
<td>50 V</td>
<td>10A</td>
</tr>
</tbody>
</table>

注: 高海拔应用通常需要传导冷却设计，因为在稀薄的大气中自然对流冷却效果较差。